what soluble in carbon disulfide and acetonitrile, very slightly soluble in ethanol, insoluble in water, solubility parameter¹² $\delta = 7.2$ (est.).

For $c-C_8F_{16}O$: d^{25} 1.7602, b.p. 104° , m.p. not obs. (glass below -113°) dielectric constant 1.85 ± 0.05 (1000 cyc.), loss factor less than 0.0001 (100 cyc.), dielectric strength 37 kv. (ASTM-D877), surface tension (dynes/cm., 25°), 15.2; viscosity (centipoises), 2.41 (0°), 1.45 (25°), 0.80 (60°); solubility, miscible with benzotrifluoride, somewhat soluble in heptane and carbon tetrachloride, very slightly soluble in benzene, acetone and ethanol, insoluble in water, soluble parameter¹² $\delta = 5.7$ (est.). Infrared Spectra of α, α, α' -Trichloro Perfluoro Ethers.—

Infrared Spectra of α, α, α' -Trichloro Perfluoro Ethers.— These compounds exhibit complex spectra, difficult to interpret. In each case, however, two fairly strong infrared bands were found in the region 10.70–11.10 and 11.20– 11.55 μ , using liquid sample thicknesses of 0.007 mm. These bands possibly may be attributable to the trichloro ether grouping. Other Lewis Acids.—No reaction was observed between the ether c-C₈F₁₆O and the less powerful Lewis acids BCl₃ (350°, 24 hours) or NaCl·AlCl₃ (230°, 15 hours). The ether was recovered quantitatively, with unchanged refractive index and infrared spectrum. Aluminum bromide, however, reacted at 170° with this ether but produced only aluminum fluoride, carbonized tars and bromine; no impurities were detectable in the recovered ether phase.

Acknowledgment.—The author would like to thank Dr. H. E. Freier for the analytical data, Dr. W. E. Keiser and Dr. J. McBrady for the infrared spectra, Mr. G. Filipovich for the electrical measurements, Mr. V. Welschinger for the viscosity data, and Mr. J. D. Keating for assistance with the autoclave reactions.

ST. PAUL 6, MINN.

[Contribution from the Medicinal Chemical Research Section, Research Division, Lederle Laboratories, American Cyanamid Co.]

α -Bromoacid Amides and Ureas as Anticonvulsants

By S. R. Safir, H. Dalalian, W. Fanshawe, K. Cyr, R. Lopresti, R. Williams, S. Upham, L. Goldman and S. Kushner

RECEIVED APRIL 8, 1955

A large number of α -bromoacid amides and ureas related to neuronal and carbromal has been synthesized for anticonvulsant activity. Maximum activity was encountered with compounds in which some branching in the acid chain was coupled with the simpler amide and urea functions.

Although α -bromoamides and ureas have for many years been used in medicine as sedatives and hypnotics, no systematic survey of this class of drugs for anticonvulsant potentiality appears to have been made.¹ The finding that neuronal (I) and carbromal (II) exhibited a high degree of protection against metrazole-induced seizures in rats gave impetus to the hope that a drug useful in petit mal epilepsy might be found in the class of α bromoamides and ureas. A synthetic program with this goal in mind is the subject of this paper.

In the selection of compounds to be synthesized, it was decided to retain the α -bromo atom while varying, on the one hand, the alkyl groups on the α carbon atom and, on the other, the amide or urea function. These features are represented by formula III in which the nitrogen is incorporated into R₂.

(C_2H_3))2CCONH2	$(C_2H_5)_2CCONHCONH_2$	R. CCOR ₂
Ι	Br	II Br	Br
			III

The most active group among the compounds listed in Table I is that derived from 2-bromo-2ethylbutyric acid. The N-methyl (XLI) and Nmethylol (XLII) amides of this acid are about as active as neuronal and carbromal. The N₃-methyl analog LVII of carbromal, although active, is somewhat less potent than carbromal. Alterations in the alkyl amide group involving increase in the chain length, unsaturation or branching, all resulted in loss or elimination of anticonvulsant activity. The glycine amide derivatives LII, LIII, LIV, and LV, the amides LI and LVI derived from heterocyclic amines and the isothiuronium derivative LIX also proved to be inactive. Compound LVIII, 1,3-bis-(2-bromo-2-ethylbutyryl)-urea, also was inactive. Thus it appears that anticonvulsant potency is retained within narrow limits of substitution among the derivatives of 2-bromo-2-ethylbutyric acid.

Some branching of the acid chain appears to be necessary for anticonvulsant activity as may be inferred from the high potency shown by compounds XXII, XXV, XXXIII, XXXIV, XXXVIII, LX and LXI and from the virtual absence of anticonvulsant activity among the linear derivatives. Isopropyl groups in particular seem to have a salutary effect.

Comparison of the amide derivatives with the urea derivatives does not permit an unequivocal preference to be made for either group as a structural requirement for anticonvulsant activity.

The amides were prepared by classical procedures, namely, reaction between the requisite acid chlorides or bromides and ammonia or amines. Examples of compounds requiring less conventional treatment are furnished in the Experimental section. 2-Annino-2-ethylbutyramide was prepared readily by hydrolysis of the nitrile. The urea derivatives were prepared in fair yields by reaction of the acid chlorides with urea or methylurea.

Several of the most active compounds are presently undergoing a limited clinical trial.

The pharmacological data were secured by Drs. R. W. Cunningham and W. Gray, assisted by F. Smith and C. Rauh, and will be published in full elsewhere.

⁽¹⁾ The Merck Index, 5th ed., Merck & Co., Inc., Rahway, N. J., 1940, p. 196, lists epilepsy as one of the uses for neuronal. Stroux, in an early clinical report [*Deut. med. Wochschr.*, **30**, 1497 (1904)] comments on the "extraordinarily favorable effect of neuronal on epilepsy but his work was performed on only a few unclassified epileptic patients without benefit of modern, long-range, controlled methods.

						TABLE I										
						R.										
						$C - CO - R_{2}$:									
						R₁∕ Br										
										-Analy	7ses, %*				Anti-	
Cmpd.	R	Ri	R ₂	M.p. or b.p.(mm .), °C.	Vield %	Formula		bon Found	Hydi Calcd.	ogen Found		mine Found	Nitr Calcd.		metrazole activity b	Recrystlsolvent
IV	CH3	н	$\mathrm{NH_2}^c$	119-121	73										1 + /100	Ether
V	CH3	н	NHC(CH ₃) ₃	119-121	73	C7H14BrNO	40.4	40.7	6.7	6.8	38.4	38.8	6.7	6.5	0/250	Pet. eth.
VI	C_2H_5	н	NHCH3	52.5 - 53	74	C₅H₁₀BrNO	33.4	33.7	5.6	5.6	44.4	44.7	7.8	7.7	0/100	Ether-pet. eth.
VII	C_2H_{δ}	н	NHC ₂ H ₅ ^d	65.5-66.5	94										1+/500	Ether-pet. eth.
VIII	C_2H_5	Н	N	94-106(0.4)	70										0/75	
IX	C_2H_5	Н	NO	102-110(0.5)	70	$C_8H_{14}BrNO_2$	40.7	40.9	6.0	6.2	33.8	34.0	5.9	5.6	0/75	
x	C_2H_{δ}	Н	N NCOOEt	Yellow sirup	76	$C_{1l}H_{1g}BrN_2O_3$	43 .0	42.9	6.2	6.5	26.0	26.1	9.1	9.1	0/50	
XI	$CH_3(CH_2)_2$	Н	NH ₂ ^f	80-81	97										2+/40	Ether-pet. eth.
XII	$CH_3(CH_2)_2$	н	N NCOOEt	Colorless oil	57	$C_{12}H_{21}BrN_2O_{\textbf{3}}$	44.9	45.2	6.6	6.4	24.9	24.6	8.7	8.9	0/100	
XIII	$CH_3(CH_2)_3$	Н	NH ₂ ^g	57-58	86										0/60	Ether-pet. eth.
XIV	$CH_3(CH_2)_3$	Н	NNCOOEt	Yellow oil	90	$C_{13}H_{23}BrN_2O_3$	46.5	46.9	6.9	7.1	23.8	24.0	8.4	8.2	0/75	
XV	CH3	CH3	NH ₂ ^h	144-147	35										0/135	EtOH
XVI	CH3	CH₃	NHCH3	53 - 55	54	C ₅ H ₁₀ BrNO	33.3	33.7	6.0	6.2	43.9	44.5	7.8	8.2	1 + /100	Pet. eth.
XVII	CH3	CH₃	$\rm NHC_2H_5$	55-57	46										0/200	Pet. eth.
XVIII	CH3	CH3	$NH(CH_2)_2CH_3$	$39-47^{i}(0.05)$		C7H14BrNO	40.4				38.4		6.7		0/200	
XIX	CH3	CH₃	NHCH(CH ₂) ₂	75–77	95	C7H14BrNO	40.4	40.7	6.7	7.0	38.4	38.3	6.7	6.7	0/400	<i>i</i> -PrOH
XX	CH3	CH₃	$N \begin{pmatrix} CH_3 \\ C_2H_5 \end{pmatrix}$	$37 - 46^{i}(0.05)$	20	C7H14BrNO	40.4	40.8	6.7	7.1	38.4	38.4	6.7	6.3	0/50	
XXI	CH3	CH ₃	NHC(CH ₃) ₃	85-88	35	C ₈ H ₁₆ Br NO	43.3	43.6	7.2	7.2	36.0	35.6	6.3	6.5	0/500	<i>i</i> -PrOH
XXII	CH ₃	CH ₃	NHCONH, ^k	138-140	51	$C_5H_9BrN_2O_2$	28.9	29.2	4.3	4.2	38.2	38.2	13.4		3 + /125	EtOH
XXIII	CH ₃	CH3	NHCONHCH ₃	118-120	42	C ₆ H ₁₁ Br N ₂ O ₂	32.3	32.9	4.9	5.1	35.8	35.8	12.6	13.4	0/150	n-PrOH
XXIV	C ₂ H ₅	CH ₃	NHCH ₃	66 - 73(0.2)	72	C ₆ H ₁₂ BrNO	37.1	37.5	6.2	6.5	41.2	41.3	7.2	7.0	2 + /40	
XXV	C_2H_5	CH3	NHC ₂ H ₅	57-59.5(0.1)) 63	C7H14BrNO	40.4	40.4	6.7	6.7	38.4	38.1	6.7	6.7	3 + /50	
XXVI	C_2H_5	CH3	NH(CH ₂) ₂ CH ₃	39 -4 6 ⁱ (0.05)	25	C ₈ H ₁₆ BrNO	43.3	44.8	7.2	7.1	36.0	37.1	6.3	6.0	0/75	
XXVII	C_2H_5	CH3	$NHCH(CH_3)_2$	44-47	20	C ₈ H ₁₆ BrNO	43.3	43.3	7.2	7.2	36.0	36.1	6.3	6.3	0/200	Dil. EtOH
XXVIII	C_2H_5	CH3	$N(CH_3)_2$	$38-43^{i}(0.05)$		C7H14BrNO	40.4	40.5	6.7	7.1	38.4	37.5	6.7		0/60	
XXIX	C₂H₅	CH3	NHCONH ₂ ^{<i>l</i>}	96.5-97.5	31	$C_6H_{11}BrN_2O_2$	32.3	32.8	5.0	5.2	35.8	35.4	12.6		0/100	
XXX	C ₂ H ₅	CH3	NHCONHCH₃	50-51.5	31	$C_7H_{13}BrN_2O_2$	35.5		5.5	5.6	33.7	33.9	11.8		1 + /200	Hexane
XXXI	$CH_3(CH_2)_2$	CH3	$\rm NH_2^m$	68-76(0.3)	56	$C_6H_{12}BrNO$	37.1		6.2	6.2	$\frac{41.2}{38.4}$	41.3	7.2	7.4	1+/60	
XXXII	$CH_3(CH_2)_2$	CH3	NHCH3	44-51'(0.05)		$C_7H_{14}BrNO$	40.4	40.4		6.8	$\frac{38.4}{41.2}$	38.5 41.7	6.7		1+/60 3+/40	Pet. eth.
XXXIII	$(CH_3)_2CH$	CH3	NH2 NHCH	64-70 42 5 45	55 80	$C_6H_{12}B_TNO$	37.1 40.4	37.6 40.2	$\begin{array}{c} 6.2 \\ 6.7 \end{array}$	$\begin{array}{c} 6.3\\ 7.0 \end{array}$	$\frac{41.2}{38.4}$	$\frac{41.7}{38.7}$	7.2 6.7	7.6 6.7	$3+/40 \\ 4+/40$	ret. etn.
XXXIV	(CH ₃) ₂ CH	CH₃	NHCH3	43.5-45 54-60(0.3)	90	C7H14BrNO	40.4	40.2	0.7	1.0	JO.4	00.1	0.7	0.7	₩ ₩	

					11	IDLE I (COMMAN	cu)									
Cmpd.	R	Rı	R ₂	M.p. or b.p.(mm.), °C.	Vield, %	Formula	Car Caled		Hydr	ogen		nine Found	Nitro		Anti metrazole l activityb	Recrystsolvent
-																
XXXV	$(CH_3)_2CH$	CH₃	NHC ₂ H ₅	$35-44^{i}(0.05)$		C ₈ H ₁₆ BrNO	43.3	43.0	1.2	1.2	36.0	35.5	6.3	6.2	0/40	D41
XXXVI	(CH ₃) ₂ CH	н	NH ₂ ⁿ	131-132	68										0/40	Ether
XXXVII	$(CH_3)_2CH$	н	NCOOEt	Colorless oil	39	$C_{12}H_{21}BrN_2O_3$	44.9	44.7	6.6	6.3	24.9	24.6	8.7	8.9	0/100	
XXXVIII	(CH ₃) ₃ C	н	NH2°	135-138	63										3 + /50	Benzene
XXXIX	(CH ₃) ₃ C	н	NHCH ₃ ^p	112-114	60	C7H14Br NO	40.4	40.7	6.7	7.0	38.4	38.1	6.7	6.7	2 + /40	Pet. eth.
\mathbf{XL}	(CH ₃) ₃ C	Н	NHCONH_2^q	185-188	46										1 + /15	Benzene
Ι	C ₂ H ₅	C_2H_5	$\mathrm{NH_2}^r$	64-66	79										4 + /40	
XLI	C_2H_5	C_2H_5	NHCH₃	40-41	71	C7H14BrNO	40.4	40.7	6.7	7.1	38.4	38.4	6.7	6.5	4 + /40	
				$40-45^{i}(0.05)$												
XLII	C ₂ H ₅	C_2H_5	NHCH ₂ OH ³	93-95	90										4 + /40	Acetone
II	C_2H_5	C ₂ H ₅	$\mathrm{NHCONH_2}^t$												4 + /40	
XLIII	C_2H_5	C_2H_5	NHC ₂ H ₅	69 - 71(0.5)	62	C ₈ H ₁₆ BrNO	43.3	43.8	7.2	7.7	36.0	35.6	6.3	6.1	1 + /25	
XLIV	C_2H_5	C_2H_5	$N(CH_3)_2$	83 - 85(0.7)	46	C ₈ H ₁₆ BrNO	43.3	43.4	7.2	7.3			6.3	6.0	0/60	
XLV	C_2H_5	C ₂ H ₅	$NH(CII_2)_2CII_3$	8 4-85 (0.8)	62	C ₉ H ₁₈ BrNO	45.8	46.0	7.7	8.0	33.8	33.6	5.9	5.7	1 + /225	
XLVI	C_2H_5	C_2H_5	$NHCH(CH_3)_2$	55 - 56(0.5)	86	C ₉ H ₁₈ Br NO	45.8	45.1	7.7	7.7			5.9	5.7	2 + /100	
XLVII	C_2H_5	C_2H_5	NHCH2CH==CII2	78 - 79(0.3)	45	C ₉ H ₄₆ BrNO	46.2	46.0	6.8	7.0	34.2	33.9	6.0	5.8	0/100	
XLVIII	C ₂ II ₅	C ₂ II5	NHCH C ₂ H ⁵	3233 70 -72(0.3)	69	$C_{10}H_{20}\text{Br}\mathrm{NO}$	48.1	48.3	8.1	8.1	31.9	3 2 .1	5.6	5.7	0/125	
XLIX	C_2H_5	C_2H_5	$NH(CH_2)_2CH(CH_3)_2$	107 - 109(0.7)	67	C11H22BrNO	50.0	50.8	8.3	8.6					0/500	
L	C_2H_5	C2H5	$NHCH_2C_6H_5$	56-57	75	C13H18Br NO	51.9	55.1	6.3	6.6	28.2	28.6	4.9	4.9	1 + /500	Ether
LI	C ₂ H ₅	C₂II₅	NHCH ₂	130133(3)	29	$C_{11}H_{16}BrNO_2$	48.2	48.6	5.8	6.0	29.2	28.6	5.1	5.2	0/50	
LII	C_2H_5		NHCH ₂ COOH	92-94	72	$C_8H_{14}BrNO_3$	38.1	38.0	5.6	5.8	31.8	31.4	5.6	5.5	0/500	Water
LIII	C_2H_5	C_2H_2	NHCH2COOEt ^u	34-36	79										0/500	Pet. eth.
LIV	C_2H_5	C_2H_5	NHCH ₂ CONH ₂ "	108 - 110	16										0/80	EtOH-pet.eth.
LV	C_2H_5	C_2H_5	$\rm NHC(Et)_2CONH_2$	181–183	36	$\mathrm{C}_{12}\mathrm{H}_{23}\mathrm{Br}\mathrm{N}_{2}\mathrm{O}_{2}$	46.9	47.2	7.5	7.8	26.0	26.1	9.1	9.2	0/500	CHCl ₃
LVI	C ₂ H ₅	$\mathrm{C}_{2}\mathrm{H}_{5}$	NCOOEt	$62 - 62 \cdot 5$	65	${ m C_{13}H_{23}BrN_2O_3}$	46.5	46.8	6.9	6.7	23.8	24.0	8.4	8.4	0/75	Beuzene-pet. eth.
LVII	C_2H_5	C_2H_5	NHCONHCH ₃	93.5-96.5	26	$C_8H_{15}BrN_2O_2$	38.3	38.7	6.0	6.3	31.9	32.0	11.2	11.0	3 + /100	Acetone-pet. eth.
LVIII	C_2H_5	C_2H_5	NHCONHCOC(Et)28	77-79	39										0/70	MeOH
			Br												,	
LIX	$C_2 \Pi_5$	C2H5	SCHCl	117–119	73	C7H14BrClNgOS	\$ 29.0	29.2	4.9	5.2	27.7	27.5	9.7	9.9*	1 + /500	HOAc-ether
$\mathbf{L}\mathbf{X}$	(CH ₃) ₂ CH	C_2H_5	NH_{2}^{y}	45-46	85										4 + /25	Ether-pet. eth.
LXI	$(CH_3)_2CH$	C_2II_5	NHCII3	37.5-40	61	C ₈ H ₁₆ BrNO	43.3	42.9	7.3	7.4	35.9	36.2	6.3	6.3	3+/40	
LXII	(CH ₃) ₂ CH	C_2H_δ	NHC2H3	54-70(0.1) 25-32 110-114(11)	80	C ₉ H ₁₈ BrNO	45.8	46.1	7.7	8.0	33.8	33.8	5.9	5.6	1+/40	
				++() 11 T (11)												

TABLE I (Continued)

Carbon Hydrogen Bromine Nitrogen metrazole Catcd. Found Catcd. Found Catcd. Found Catcd. Found activity ^b Recrystsolvent	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 Analytical data were furnished by Mr. L. Brancone and associates. ^b Ratings arc expressed in terms of ability to suppress metrazole-induced convulsions in rats at the asymptomatic dosc in mg./kg.; 4+ indicates complete protection. ^e A. Bischoff, <i>Bar.</i>, 30, 2312 (1897), reported m.p. 123°. ^d J. v. Braun, F. Dengel and A. Jacob, <i>ibid.</i>, 70B, 994 (1937). ^e A. Bischoff, <i>ibid.</i>, 31, 2846 (1898), reported m.p. 158-519° and b.p. 144-146° (25 mu.). ^f A. Pomerautz and R. Comor, Tens Journa, A. Jacob, <i>ibid.</i>, 70B, 994 (1937). ^e A. Bischoff, <i>ibid.</i>, 31, 2846 (1898), reported m.p. 158-519° and b.p. 144-146° (25 mu.). ^f A. Pomerautz and R. Comor, Tens Journa, 61, 3386 (1393), reported m.p. 78.5-79° ^{eo} R. P. Porcantz and Connor, ref. <i>f</i>, reported m.p. 158-59° cor. ^A Bischoff, <i>Fet.</i>, reported m.p. 148° ^f, J. v. Braun, F. Jostes and A. Heymons, <i>Ber.</i>, 60B, 92 (1927), teported m.p. 78.5-79° ^{for} a regorded m.p. 132.6° (1927), reported m.p. 133.6° (1927), reported m.p. 132.5°. ^m German Patent 165, 281. ^a A. Bischoff, <i>Ber.</i>, 31, 3236 (1898), reported m.p. 133.6°. ^e A. Hinneyer, F. C. Whitmore and V. H. Wallingford, Teris Journat., 55, 4209 (1933), reported m.p. 133.6°. ^a C. Fundinatas, <i>L. Pharmacol. Expl.</i>, 706, 1938), ^a Honeyer, Whitmore and Wallingford, ref. o, reported m.p. 132.5°. ^m German Patent 165, 281. ^a A. D. Bass, <i>J. Pharmacol. Expl.</i>, 706, 1938), ^a Honeyer, Whitmore and Wallingford, ref. o, reported m.p. 138.5°. ^c C. Fundi. 71, 1505 (1904), reported m.p. 183-6°. ^c (1921), reported m.p. 132.6°. ^c Connercially available. ^e Roscimmulu, ref. 23, reported m.p. 109-110°. ^e Cerman Patent 273, 2320. ^c Connercially available. ^e Roscimulu, ref. 23, reported m.p. 100-110°. ^e Cerman Patent 283, 105 and 287,001. ^e Carman Patent 273, 253.11.11. ^e C. H. Volwiler and D. L. Tabern, 77, 103 (1951), reported m.p. 109-110°. ^e Cerman Patent 201, ^b restord, D. L28-131°(5 mm.). ^{ee} E. H. Volwiler and D. L. Tabern, 17
Hydrogen Bromin alcd. Found Calcd. F	4 35. 0 33 9 33 1 31.	ress me ress me . v. Bra . v. Bra J. u and Wallingf wrted m. 25–31 harm. Z
Hydrogen alcd. Fo	7.3 7.3 7.7 8. 7.7 7.7 8.1 8.	to supply J_{1}^{o} to supply J_{2}^{o} to supply J_{2}^{o} connected J_{2}^{o} ourneau, V , H. V. H. U. I.
on Found C	43.2 46.1 48.4 48.4	ability n.p. 1233 z and R z and R i J. v. 7). i J. v. 7). i J. v. and rd, ref. 23, repo Kuhlm
Calcd.	43.3 45.8 45.8 48.1	terms of terms of ported 1 ported 1 ported 1 ported 1 ported 1 ported 1 provide 1980 (1960 vallingfe und, ref. 2 v. G. S. H. Vo.
Formula	70–80 ⁱ (1) 72 C ₉ H ₁₆ BrNO 70–74(0.3) 68 C ₉ H ₁₈ BrNO 90–105 ⁱ (0.7) 72 C ₉ H ₁₈ BrNO 75–80(0.2) 27 C ₁₀ H ₂₀ BrNO	are expressed in , 2312 (1897), re 5 mm.) - / A. Pe 5 mm.) - / A. Pe 5 mm.) - / A. Pe 5 mm / A. Pe 1807 - / A. Pe 18
$\mathrm{Yield},$	72 68 7) 72 27	atings fer, 30 46° (26 noff, ref off, ref thol. 1 ° A. H. ° A. H. eyer, V eyer, V availab und: "8-131"
M.p. or Yield, b.p.(mm.), °C. %	$\begin{array}{c} 70-80^{i}(1)\\ 70-74(0.3)\\ 90-105^{i}(0.7)\\ 75-80(0.2)\end{array}$	Ind associates. ^b R: 1. ^e A. Bischoff, B 30° and b.p. 144–1, 5-59° cor. ^h Bisch out, $Arch. exp$. ^P a orted m.p. 133°. 50(1938), ^e Hom 50(1938), ¹¹ Fo 12.2; S, 11.1; Fo (1), reported b.p. 12
R3	C2H, NH2 [#] C2H, NHCH3 C2H, NH2 ^{4#} C2H, NH2 ^{4#} C2H, NHCH3	 Mr. L. Brancone al omplete protection orted m.p. 155-1; reported m.p. 58, <i>k</i> A. v. d. Eeckh, <i>i</i>, 3236 (1898), rep <i>cpll. Therab.</i>, 64, , an Patcut 273,320, I. ^a Caled.: C1, Nat. 73, 103 (1951)
R1	C ₂ H C ₂ H C ₂ H C ₂ H	ed by l eates c 38), rej 38), rej 38), rej <i>ref. f</i> , <i>ation.</i> <i>Ber.</i> , 3] <i>col. E3</i> <i>col. E3</i> <i>col. E3</i> <i>col. E3</i> <i>sol. 287</i> ,000 <i>s</i> Jour
R	$\begin{array}{ccc} {\rm CH}_{4}({\rm CH}_{2})_{3} & {\rm C}_{2}{\rm H}_{6} & {\rm NH}_{2}^{ a} \\ {\rm CH}_{4}({\rm CH}_{2})_{3} & {\rm C}_{2}{\rm H}_{6} & {\rm NH}{\rm CH}_{3} \\ {\rm CH}_{4}({\rm CH}_{2})_{3}{\rm CH}_{1} & {\rm CH}_{2}^{ ad} \\ {\rm CH}_{3}({\rm CH}_{2})_{3}{\rm CH}_{5} & {\rm NH}_{2}^{ ad} \\ {\rm CH}_{3}({\rm CH}_{2})_{3}{\rm CH}_{5} & {\rm NHCH}_{3} \\ \end{array}$	 Analytical data were furnished by Mr. L. Brancone and associates. ^b Ratings are expressed in terms of ability to suppress metrazole-ind matic dose in mg./kg.; 4+ indicates complete protection. ^e A. Bischoff, Ber, 30, 2312 (1897), reported m.p. 123°. ^d J. v. Braun, F. Den and is by reported m.p. 125-130° and b.p. 144-146° (25 mm.). ^J A. Pomerantz and R. Connor, THIS JOURNAL, cor. ^e Pomerantz and Connor, ref. f, reported m.p. 125-59° cor. ^A Bischoff, ref. c, reported m.p. 148° ^s J. v. Braun, F. Jostes and A. un. 57°. ^J Evaporative distillation. ^e A. v. d. Eeckhout, <i>Arch. exp. Pathol. Pharmabol.</i>, 57, 338 (1907). ^l Pommeau and Florence, r Patent 165,281. ^a A. Bischoff, <i>Ber.</i>, 31, 3236 (1898), reported m.p. 133°. ^e A. H. Homeyer, F. C. Whitmore and V. H. Wallingford, THIS 138°. ^e A. D. Bass, <i>J. Pharmacol. Expl. Therap.</i>, 64, 50 (1938). ^e Homeyer, Whitmore and Wallingford, ref. <i>o</i>, reported m.p. 188. ^b (Jo04). reported m.p. 66-7°. ^e German Patent 273,320. ^e Commercially available. ^e Rosemmud, ref. 23, reported m.p. 35–36°. ^e Resonander 24, 50, 11. Founder CI, 12.1, S, 11.2. ^a G. Kuhlmann, <i>Pharm. Zlg.</i>, 76, 11. Stevens and T. H. Coffield, THIS JOURAL., 75, 103 (1951), reported b.p. 128–131° (5 mm). ^{ae} E. H. Volwiler and D. L. Tabern, ref. 19.
Cmpd.	LXVI LXV LXIV ILXIV	 Ana Anatic da A. Bisc A. Bisc A. Bisc Bisc Patent 1 138° Patent 1 1904), r Cerma Stevens

TABLE I (Continued)

109-110°. • čC. L. * Rosenmund, ref. 23, reported m.p. 10 76, 113 (1931), reported m.p. 50–51°. ref. 19. ref. l m.p. 35-36°. , Pharm. Ztg., i D. 66-67°. * German Patent 273,320. * Commercially available. * Rosemmund, rcf. 23, reported m 283,105 and 287,001. * Caled.: Cl, 12.2; S, 11.1; Found: Cl, 12.1; S, 11.2. * G. Kuhlmann, *I* Coffield, Turs Journar, **73**, 103 (1951), reported b.p. 128-131° (5 mm.). * E. H. Volwiler and D.

α-Bromoacid Amides and Ureas as Anticonvulsants

Experimental²

 α -Bromoacid Halides.—2-Bromopropionyl bromide was obtained from Eastman Kodak Co.

obtained from Eastman Kodak Co. The following α -bromoacid chlorides were prepared, in the yields indicated, by reaction of the requisite, commer-cially purchased bromoacids with thionyl chloride: 2-bromo-butyryl chloride,³ b.p. 148-150° (82%); 2-bromo-2-ethyl-butyryl chloride,⁴ b.p. 68-75° (15 mm.) (67%); 2-bromo-valeryl chloride,⁵ b.p. 72-77° (20 mm.) (76%); 2-bromo-3-methylbutyryl chloride,⁶ b.p. 59° (15 mm.) (86%); 2-bromohexanoyl chloride,⁷ b.p. 91-94° (35 mm.) (89%); and 2-bromo-2-methylpropionyl chloride ⁵ b.p. 28-36° (28 and 2-bromo-2-methylpropionyl chloride, b.p. 28-36° (28 mm.) (74%).

A group of three α -bromoacid chlorides was prepared by the method of Schwenk and Papa⁹ in which bromination is carried out on the acid chlorides with excess thionyl chloride carried out on the acid chlorides with excess thionyl chloride present as solvent. The chlorides then were fractionated through a Vigreux column. The three products are: 2-bromo-2,3-dimethylbutyrgl chloride, b.p. 70–78° (17 mm.), in 50% yield from 2,3-dimethylbutyric acid¹⁰; 2-bromo-2-methylvaleryl chloride, b.p. 69–75° (15 mm.), in 62% yield from 2-methylvaleric acid¹¹; and 2-bromo-3,3-dimethyl-butyryl chloride,¹² b.p. 67–74° (14 mm.), in 85% yield from 3,3-dimethylbutyric acid.¹³ Three *a*-bromoacids were prepared by the method of

from 3,3-dimethylbutyric acid.¹³ Three α -bromoacids were prepared by the method of Clarke and Taylor.¹⁴ These are: 2-bromo-2-methylbutyric acid,¹⁵ b.p. 112–116° (12 mm.), in 79% yield from 2-methyl-butyric acid; 2-bromo-2-ethyl-3-methylbutyric acid,¹⁶ b.p. 102–108° (2.5 mm.), in 59% yield from 2-ethyl-3-methyl-butyric acid¹⁷; and 2-bromo-2-ethylhexanoic acid,¹⁶ b.p. 147–152° (17 mm.), in 78% yield from 2-ethylhexanoic acid.¹⁸ The bromoacids were, in turn, converted into the chlorides with thionyl chloride in the yields indicated chlorides with thionyl chloride in the yields indicated: 2-bromo-2-methylbutyryl chloride,⁵ b.p. 54-59° (14 mm.) 2-bromo-2-methyloutyryl chloride, b.p. 54-59° (14 mm.) (75%); 2-bromo-2-ethyl-3-methylbutyryl chloride, b.p. 76-82° (12 mm.) (85%); and 2-bromo-2-ethylhexanoyl chloride, b.p. 106.5-108° (20 mm.) (26%).
2-Bromo-2-ethyl-3-methylhexanoyl chloride,¹⁹ b.p. 108-111° (14 mm.), was obtained in 64% yield from thionyl chloride and 2-bromo-2-ethyl-3-methylhexanoic acid.²⁰

Amines.—Ethyl 1-piperazinecarboxylate was prepared by the method of Moore, $et \ al.^{21}$ All other amines were obtained commercially.

2.Amino-2-ethylbutyramide Hydrochloride.—To a solu-tion of fuming hydrochloric acid prepared by saturating 670 cc. of the 12 N reagent at 0° with hydrogen chloride gas there was added 58.5 g. (0.52 mole) of 2-amino-2-ethylbutyronitrile.²² The resulting solution was allowed to stand at room temperature for 24 hours and then was evaporated to dryness under reduced pressure below 45°.

(2) All melting points and boiling points are uncorrected.

(3) M. A. Collet, Bull. soc. chim. France, [3] 15, 1100 (1896).

(4) German Patent 158,220.

(5) E. Fourneau and G. Florence, Bull. soc. chim. France, [4] 43, 211 (1928).

(6) E. Fischer and J. Schenkel, Ann., 354, 12 (1907).

(7) C. S. Marvel and W. A. Noyes, THIS JOURNAL, 42, 2259 (1920).

(8) D. S. Tarbell and P. Noble, Jr., ibid., 72, 2657 (1950).

(9) E. Schwenk and D. Papa, ibid., 70, 3626 (1948).

- (10) P. van Romburgh, Rec. trav. chim., 5, 228 (1886).
- (11) E. Strassny, Monatsh. Chem., 12, 589 (1891).
- (12) F. C. Whitmore and V. H. Wallingford, THIS JOURNAL, 55, 4209 (1953).

(13) S. Wideqvist, Arkiv. Kemi Mineral. Geol., B23, No. 4 (1946); C. A., 41, 1615 (1947).

(14) H. T. Clarke and E. R. Taylor, "Organic Syntheses," Coll. Vol. I, John Wiley and Sons, Inc., New York, N. Y., 1948, p. 115.

(15) F. E. Ray, THIS JOURNAL, 50, 558 (1928).

(16) R. C. Amin, W. H. Hartung and C. W. Chapman, J. Am. (10) R. C. Malin, W. R. Harting and C. W. Chapman, J. Am.
 Pharm. Assoc., Sci. Ed., 37, 243 (1948).
 (17) A. W. Crossley and H. R. Le Sueur, J. Chem. Soc., 77, 83

(1900)

(18) H. S. Raper, ibid., 91, 1831 (1907).

(19) E. H. Volwiler and D. L. Tabern, THIS JOURNAL, 58, 1352 (1936).

(20) W. J. Doran and H. A. Shonle, J. Org. Chem., 3, 193 (1938) (21) T. S. Moore, M. Boyle and V. M. Thorn, J. Chem. Soc., 39 (1929)

(22) H. Biltz and K. Slotta, J. prakt. Chem., 113, 233 (1926).

The crude solid residue was recrystallized from methanolether and gave 49 g. (56%) of product, m.p. 234–237°.

Anal. Calcd. for $C_6H_{15}CIN_2O$: C, 43.5; H, 9.0; Cl, 21.3; N, 16.8. Found: C, 43.4; H, 9.0; Cl, 21.0; N, 16.4.

 α -Bromoamides.—The amides listed in Table I were made by reaction of acid chlorides with ammonia or amines either in aqueous or in anhydrous media. If a concentrated aqueous solution of the base was available commercially, the aqueous procedure was used. Ether or chloroform generally was used for the anhydrous bases. After filtration of the hydrochlorides of the bases the products were obtained by evaporation of the solvent and purified in the manner indicated in Table I.

2-Ethyl-2-(2-bromo-2-ethylbutyramido)-butyramide (LV). —To an ice-cold, stirred solution of 35 g. (0.21 mole) of 2amino-2-ethylbutyramide hydrochloride in 300 cc. of water and 50 cc. of acetone there was added, simultaneously, during 1 hour, a solution of 47.1 g. (0.22 mole) of 2-bromo-2-ethylbutyryl chloride in 100 cc. of acetone and 490 cc. (0.49 mole) of 1 N sodium hydroxide solution. The product separated as a white solid which was filtered and airdried.

N-(2-Bromo-2-ethylbutyryl)-glycine (LII).—To a solution of 2.8 g. (0.01 mole) of N-(2-bromo-2-ethylbutyryl)-glycine ethyl ester²³ in 25 cc. of methanol, there was added, dropwise, at 5°, with stirring, 2 cc. (0.01 mole) of 5 N sodium hydroxide solution. After having been stored at room temperature overnight the solution was concentrated under reduced pressure to remove most of the methanol and the

(23) K. W. Rosenmund, Ber., 42, 4470 (1909).

resulting solution was acidified with dilute hydrochloric acid to pH 1. The product separated from the cooled solution as a white precipitate which was filtered, washed with water, and dried.

1-(2-Bromo-2-ethylbutyryl)-3-methylurea (LVII).—A mixture of 25 g. (0.34 mole) of N-methylurea and 36.1 g. (0.12 mole) of 2-bromo-2-ethylbutyryl chloride was heated on a steam-bath for six hours with occasional swirling. A clear reddish-brown solution formed to which was added 100 g. of ice and 50 cc. of water. A gum formed which solidified upon trituration. The solid was filtered and washed first with cold water and then with petroleum ether (b.p. 20–40°). The crude solid was extracted with petroleum ether in a Soxhlet apparatus for 4 hours. Concentration of the solution to a small volume gave the product as a white solid.

1-(2-Bromo-2-methylpropionyl)-3-methylurea (XXIII).— A mixture of 20 g. (0.12 mole) of 2-bromo-2-methylpropionyl chloride and 17.8 g. (0.24 mole) of methylurea was heated on a steam-bath for 0.5 hour. An oily solid formed and the mass was treated with water and filtered. The white solid was dried on a porous plate. 1-(2-Bromo-2-methylbutyryl)-3-methylurea (XXX).—A

1-(2-Bromo-2-methylbutyryl)-3-methylurea (XXX).—A mixture of 37.1 g. (0.5 mole) of dried methylurea and 39.9 g. (0.2 mole) of 2-bromo-2-methylbutyryl chloride was stirred and heated for 2 hours in an oil-bath at 60-87°. To the mixture, consisting of an amber liquid containing some colorless crystals, was added 100 cc. of water. On stirring and cooling, colorless crystals separated. These were filtered, ground in a mortar with ice-water, and filtered again.

PEARL RIVER, N. Y.

[Contribution from The Research Laboratories, the Upjohn Co., ``and the University College Hospital Medical Schoolb]

The Behavior of the Isomers of α,ϵ -Diaminopimelic Acid on Paper Chromatograms

By Lionel E. Rhuland,^a Elizabeth Work,^b R. F. Denman^b and D. S. Hoare^b

Received May 2, 1955

The amino acid α , ϵ -diaminopimelic acid can be resolved into the DD- and LL-isomers by means of paper chromatography without resorting to the use of optically active solvents. A solvent system is described in which the isomeric forms of α , ϵ -diaminopimelic acid can be examined in a complex protein hydrolysate.

Work¹ isolated α,ϵ -diaminopimelic acid (DAP) from *Corynebacterium diphtheriae* and suggested that it was the *meso*-isomer. Comparative paper chromatographic studies of this material with synthetic DAP^{1,2} in a series of ten solvent systems indicated that the synthetic and natural DAP preparations behaved the same, although some streaking of the synthetic material was noted in phenol (NH₃ atmos.) using Whatman No. 4 paper.³

In the course of routine chromatographic studies with six solvent systems differing from those of Work¹ or Wright and Cresson,² we observed the presence of only one ninhydrin-positive material in synthetic DAP⁴ (*cf.* Table I). However, in a methanol (80)-water (20)-pyridine (4) system,⁵ we observed that this material could be separated into two distinct components. Two-dimensional paper chromatography in the above system (*cf.* Fig. 1) demonstrated that the separation was not due to the formation of ionic species or solvent artifacts

(1) E. Work, Biochem. J., 49, 17 (1951).

(2) L. D. Wright and E. L. Cresson, Proc. Soc. Exptl. Biol. Med., 82, 354 (1953).

(3) Work, unpublished.

(4) Prepared by the method of J. C. Sheehan and W. A. Bolhofer, THIS JOURNAL. 72, 2786 (1950).

(5) R. R. Redfield, Biochim. Biophys. Acta, 10, 344 (1953).

and that both components were biologically active for the DAP auxotroph of $E. \ coli\ 173-25.^6$

TABLE I

THE CHROMATOGRAPHIC BEHAVIOR OF SYNTHETIC DI-AMINOPIMELIC ACID IN A VARIETY OF SOLVENT SYSTEMS Whatman No. 1 paper, descending system, temp. 25°, 20

mcg., α , ϵ -diaminopimelic acid. Ninhydrin used for developing chromatogram.

Solvent system	R_{f}
n-BuOH (81)-H ₂ O (19)-PTSO ₃ H (0.25) ^a	0.16
$H_{2}O(19) - n - BuOH(81)$	0
$H_{2}O(90)$ - <i>n</i> -BuOH (4)-PTSO ₃ H (0.25)	0.8
n-BuOH (4)-H ₂ O (96)	0.8
Methanol (80)– H_2O (20)–pyridine (4)	$0.17, 0.26^{b}$
n-BuOH (50)-H ₂ O (25)-acetic acid (25)	0.21

^a p-Toluenesulfonic acid. ^b Two components.

These data suggested that isomeric forms of DAP were being separated by means of paper chromatography. Confirmation of this fact was obtained by chromatography of the resolved isomers of DAP $(LL, DD \text{ and } meso)^7$; the LL- and DD-isomers were re-

(6) B. D. Davis, Nature, 169, 534 (1952).

(7) E. Work, S. M. Birnbaum, M. Winitz and J. P. Greenstein, THIS JOURNAL, unpublished; kindly made available by Dr. J. P. Greenstein.